Главная / Библиотека / Дифракционные решетки

Дифракционные решетки

Дифракционные решетки

Дифракционные решетки

Дифракционные решетки, пропускающие и отражательные, предназначены для пространственного деления электромагнитной волны в спектр. Когерентные пучки интерферируют, претерпевая дифракцию на периодической структуре. В пропускающих дифракционных решетках периодическая структура является множеством плотно расположенных узких щелей. При решении задачи о распределении интенсивности и записи ответа в виде функции, зависящей от длины волны и координаты на множестве щелей, получается общее выражение, которое справедливо для всех дифракционных решеток при θi = 0°:

ф1        (1)


Это выражение также называют уравнением дифракционной решетки. Оно означает, что дифракционная решетка с периодом a преломляет свет дискретно, прошедшие лучи составляют с нормалью угол дифракции θm в зависимости от значения mλ, m – номер главного максимума. При заданном порядке m различные длины волн излучения будут выходить из решетки под разными углами. Для белого света происходит разложение в непрерывный спектр, зависящий от угла.

Пропускающая решетка

рис1

Рисунок 1. Пропускающая решетка

Один из распространенных типов решеток – пропускающая решетка. Периодическая структура решеток создается путем вырезания или гравировки на прозрачной подложке параллельных штрихов. На такой поверхности свет может рассеиваться. Пример пропускающей решетки приведен на рис. 1.

Пропускающая решетка, показанная на рис. 1, обладает периодической структурой благодаря узким штрихам с периодом a. Падающий свет попадает на решетку под углом θi, который отсчитывается от нормали к поверхности. Свет порядка m выходит из решетки под углом θm, который также определяется от нормали. Используя некоторые геометрические соотношения и общее выражение для дифракционной решетки (1), для пропускающей дифракционной решетки получим:

f2_0.png        (2)
 

где углы θi и θm положительны, если падающий и дифрагированный свет оказываются на противоположных сторонах нормали к поверхности решетки, как показано на рис. 1. Если эти лучи находятся на той же стороне нормали решетки, то углы следует считать отрицательными.

Отражательная решетка

рис2
Рисунок 2. Отражательная решетка

Другой распространенный тип решеток – отражательная решетка. Отражательные решетки получают путем нанесения металлического покрытия на подложку и формирования параллельных штрихов на полученной поверхности. Также существует технология производства из эпоксидных и/или пластиковых оттисков от контрольного шаблона. Во всех случаях свет отражается от поверхности с нанесенными штрихами под разными углами, которые соответствуют разным порядкам и длинам волн. Пример отражательной решетки показан на рис. 2. Используя геометрическую схему, аналогичную приведенной выше, получается уравнение отражательной решетки:

f3.png            (3)



где угол  θi – положительный и угол θm  – отрицательный, если падающий и дифрагированный свет оказываются на противоположных сторонах нормали к поверхности решетки, как показано на рис. 2. Если эти лучи находятся на одной стороне нормали решетки, то оба угла следует считать положительными.

Оба типа решеток обладают одинаковым недостатком: нулевой порядок не подвергается дифракции и соответствует отражению или пропусканию поверхности. Решая уравнение (2) при условии, что θi = θm , находится единственное решение, при котором m = 0 независимо от длины волны или периода решетки. При этом условии никакой информации о длине волны, то есть весь свет или отражается от поверхности, или проходит сквозь нее.

Описанная проблема может быть решена с помощью особого рельефа, наносимого на поверхность вместе со штрихами. Дифракционные решетки такого типа называют рельефно-фазовыми. Их пример приведен на рис. 3.

Рельефно-фазовые (нарезные) решетки

рис3
Рисунок 3. Геометрия рельефно-фазовой решетки

рис4
Рисунок 4. Отражение нулевого порядка от рельефно-фазовой решетки

Рельефно-фазовые решетки (также известные как эшелетты) – особый вид отражательной или пропускающей дифракционной решетки, которые используют для достижения максимальной эффективности решетки в определенном порядке дифракции. Таким образом можно повысить мощность излучения при дифракции, минимизировав потери излучения других порядков (в частности нулевых). Благодаря своей конструкции, рельефно-фазовые решетки работают с определенной длиной волны, которую также называют длиной волны блеска.

Длина волны блеска – одна из основных характеристик рельефно-фазовых решеток. К таковым характеристикам также относятся другие два параметра, указанные на рис. 3: a – расстояние между гранями, γ – угол блеска (угол наклона грани штриха). Угол блеска может быть измерен от нормали к поверхности и от нормали к грани.

Геометрия концентрирующих решеток сходна с пропускающими и отражательными решетками. Углы падения θi и отражения θm максимумов порядка m отсчитываются от нормали к поверхности решетки. Существенное отличие заключается в том, что угол отражения зависит от угла блеска, но не от нормали поверхности решетки. Таким образом можно регулировать эффективность дифракции, изменяя только угол блеска дифракционной решетки.

Отражение нулевого порядка от рельефно-фазовой решетки показано на рис. 4. Падающий под углом θi луч отражается под углом θm при m = 0. Из уравнения (3) выводится единственное решение θi = – θm, что аналогично отражению от плоской поверхности.

рис5
Рисунок 5. Отражение света от грани рельефно-фазовой решетки

рис6
Рисунок 6. Нормальное падение света на рельефно-фазовую решетку

Отражение от рельефно-фазовой решетки отличается от отражения света в случае плоской поверхности за счет профиля штрихов, как видно из рис. 5. Зеркальное отражение от рельефно-фазовой решетки происходит из-за угла блеска. Этот угол считается отрицательным, если он находится на той же стороне нормали поверхности решетки, что и угол падения. Выполнив несколько простых геометрических преобразований, можно обнаружить следующее:

ф4        (4)


Рис. 6 иллюстрирует случай нулевого угла падения, при котором свет падает перпендикулярно поверхности решетки. В этом случае нулевой порядок отражения получается при 0о. Используя уравнения (3) и (4), получаем уравнение решетки с удвоенным углом блеска:

ф5        (5)

 

Схема Литтроу

Рельефно-фазовые решетки с конфигурацией Литтроу широко применяются в монохроматорах и спектрометрах из-за особенности периодической структуры. Пусть при падении света под углом θi эффективность решетки максимальна. По схеме Литтроу угол падения равен углу дифрагированных лучей, вышедших из решетки, θi = θm, тогда для ненулевых порядков дифракции получим:

ф6        (6)


 

рис7
Рисунок 7. Схема Литтроу

Угол Литтроу θL отсчитывается от точки наибольшей интенсивности (m = 1), λD – рабочая длина волны, a – постоянная решетки. Легко увидеть, что угол в схеме Литтроу равен углу блеска для рабочей длины волны. Соответствующие сведения даны в таблицах спектральных характеристик решеток.

ф7        (7)


Также можно вывести, что увеличение углового разделения длины волны сопровождается ростом порядка дифракции для света с нормальным падением, то есть при нулевом угле падения θm растет так же, как порядок m. Существует два основных недостатка дифракционной картины более высокого порядка по сравнению с дифракционной картиной низкого порядка: во-первых, уменьшение эффективности дифракции более высоких порядков, во-вторых, уменьшение свободного спектрального диапазона, определяемого соотношением:

ф8        (8)



где λ – центральная длина волны, m – порядок.

Первая проблема, возникающая при наблюдении дифракционных картин высоких порядков, решается с помощью использования эшелеттов. Этот тип решеток обладает наибольшим углом блеска и относительно низкой плотностью штрихов, благодаря чему удается достичь достаточной концентрации энергии излучения при дифракции излучения высоких порядков. Второй недостаток компенсируют, добавляя в систему специальную дополнительную оптику: решетку, рассеивающую призму или иную оптику, обладающую рассеивающими свойствами.

Голографические решетки

рис8
Рисунок 8. Голографическая решетка

Рельефно-фазовые решетки обладают наибольшей эффективностью при использовании на рабочей длине волны. Однако на их работу серьезно влияют периодические ошибки – дублирование, большая доля рассеянного света. Все это негативно сказывается на измерениях, требующих высокой точности. Потому во многих экспериментах применяют голографические решетки, эффективность которых ниже, однако стабильность выше.

Голографические решетки в промышленном масштабе производят тем же способом, что и нарезные: копированием контрольного образца. Шаблон голографической решетки изготавливают методом фотолитографии: действием на светочувствительный материал двух интерферирующих лазерных пучков. При этом интерференционная картина экспонируется на поверхность в виде периодической структуры. Пример голографической решетки приведен на рис. 8.

Замечание: дисперсия зависит от числа штрихов на мм, но не от формы самих штрихов. Следовательно, уравнение решетки для расчета углов можно применять и в случае голографических решеток.

Факторы, которые необходимо учитывать при выборе дифракционной решетки:

1. Эффективность

Нарезные решетки демонстрируют более высокую производительность в сравнении с голографическими решетками, однако последние имеют более широкий рабочий диапазон. Обычно нарезные решетки применяют в исследованиях флуоресценции и в опытах, связанных с переизлучением.

2. Длина волны блеска

Нарезные решетки имеют пилообразный профиль, который получается вследствие нанесения штрихов на подложку. В результате пик интенсивности таких решеток достигается при излучении, близком к длине волны блеска. Голографические решетки имеют синусоидальный профиль, потому пик интенсивности достигается на рабочей длине волны. Нарезные решетки в основном применяются в приложениях с узким волновым диапазоном.

3. Светорассеяние

Из-за различия в способах нанесения штрихов голографические и нарезные решетки имеют разницу в светорассеянии. Промышленное нанесение штрихов нарезным способом повышает вероятность ошибок, а фотолитографический способ изготовления решеток более стабилен, в связи с чем голографические решетки имеют меньшее светорассеяние. Их применяют в рамановской спектроскопии.

4. Разрешающая способность

Разрешающая способность решетки – расстояние, на котором возможно различить две длины волны. Оно определяется согласно критерию Рэлея применительно к дифракционному максимуму. Две длины волны различимы, когда максимум одной длины волны совпадает с минимумом второй. Хроматическая разрешающая способность определяется из соотношения R = λλ = nN, где Δλ – разрешаемая разница длин волн, n – порядок дифракции, N – число подсвеченных штрихов. Благодаря низкой плотности штрихов эшеллеты имеют высокое разрешение.

Правила работы с дифракционными решетками

Поверхность дифракционных решеток легко повреждается отпечатками пальцев, аэрозолями, после контакта с влагой. Малейший контакт с абразивными частицами также приводит к неисправностям. Необходимо соблюдать строгие требования по эксплуатации: например, переносить решетку можно только держа за боковые стороны. Необходимы латексные перчатки или любые другие меры защиты рабочей поверхности от отпечатков пальцев. Контакт с растворителями также следует исключить. Не предпринимайте иных попыток чистить решетку, кроме сдувания пыли чистым, сухим воздухом или азотом. Незначительные дефекты на поверхности решетки обычно не влияют на производительность.

 

 

Последние статьи
Лазерная обработка медицинских материалов

Медицинские приборы от имплантов и катетеров до наиболее часто используемых хирургических инструментов (ножниц, скальпелей, щипцов) в основном производятся из высококачественной стали, алюминия, титана и пластика. Маркировку любых из вышеперечисленных материалов можно произвести с помощью ультрабыстрого лазера...

Метрология

Лазерное охлаждение атомов (или «атомная ловушка») основано на действии силы радиационного трения, с помощью которых атомы могут охлаждаться до сверхнизких температур и удерживаться в таком состоянии с помощью лазерных пучков и линейного неоднородного магнитного поля...

Введение в принцип работы спектрометра HyperFine компании LightMachinery

Спектрометр - оптический прибор для разложения пучка излучения в спектр (для излучения в видимом диапазоне - на различные цвета) и дальнейшего анализа. Так, излучение белого цвета с помощью спектрометра раскладывается на длины волн, соответствующие красному, зеленому, желтому и синему цвету...

Биовизуализация

Несколько сотен лет исследования биоматериалов проводились с помощью источников белого света. Люди использовали для подсветки и возбуждения атомов вещества обыкновенные лампы накаливания или газоразрядные источники...

Энергетика

Суперконтинуум лазеры белого света используются в качестве симулятора солнечного света как для крупногабаритных батарей, так и для испытаний в микромасштабе, например, для анализа плазмонных частиц при преобразованиях с понижением или повышением частоты...

У Вас особенный запрос?
У Вас особенный запрос?
Весьма часто наши заказчики лучше нас знают, какое оборудование им нужно. В этом случае мы берём на себя общение с производителем, доставку, и таможенную очистку, а также все вопросы гарантийного периода. Пожалуйста, заполните эту форму, и мы свяжемся с Вами, чтобы помочь решить любую Вашу задачу. Или позвоните нам по телефону +7(495)199-0-199
Форма заявки
Ваше имя: *
Ваше имя
Ваш e-mail: *
Ваш телефон: *
Ваш телефон
Наши
контакты
г. Москва, ул. Бутлерова, д. 17Б, офис 502

г. Санкт-Петербург, Коломяжский проспект, 33 корпус 2