Главная / Библиотека / F-Theta объективы

F-Theta объективы

F-Theta объективы

F-Theta объективы

F-Theta объективы разработаны специально для повышения точности лазерных сканирующих систем, а также систем лазерной гравировки. Данные объективы широко применяются при передаче изображений и обработке материалов. При лазерной гравировке, как и при лазерном сканировании, лучших результатов добиваются с применением визуализации в плоском поле. Сферические линзы строят изображения только в круговой плоскости (рис. 1А). Сканирующие объективы с плоским полем решают эту проблему, при этом смещение луча зависит от произведения эффективного фокусного расстояния f на тангенс угла отклонения θ (рис. 1B). Хотя нелинейное смещение может быть высчитано с помощью специальных алгоритмов программного обеспечения, оптимальным решением считается выработка линейного смещения, то есть постоянной скорости сканирования. Изображения, формируемые объективами F-Theta обладают бочкоообразным искажением и прямо пропорциональным к углу отклонения смещением (Рис. 1C). Эта особенность устраняет необходимость сложной электронной коррекции, таким образом появляется возможность создавать быструю, относительно недорогую и компактную систему сканирования.

ris1.gif

Рисунок 1. Сканирующие объективы: А – сферическая линзы, В – объектив с плоским полем, С – F-Theta объектив

F-Theta объективы решают множество задач, связанных с лазерным сканированием. Кроме того, они благодаря своей конструкции снижают количество оптических компонентов в системе, где требуется плоское поле визуализации. Эти объективы позволяют формировать более точные размеры пятна, повышать разрешение при сканировании или печати, а также увеличивать интенсивность при гравировке или сварке. Важно отметить, что интенсивность и разрешение постоянны на всей плоскости изображения.

Установка сканирующих объективов

Лазерные сканирующие системы оптимизированы для тщательного контроля диаметра фокального пятна лазерного пучка и точного позиционирования. В основном лазерные сканирующие системы оснащены одним или двумя сканирующими зеркалами, в зависимости от типа установки. Например, в однозеркальной системе зеркало должен располагаться на входном зрачке F-Theta объектива. В системе с парой зеркал входной зрачок F-Theta объектива должен располагаться между двумя зеркалами. Наилучшая производительность F-Theta объектива достигается путем уменьшения расстояния между зеркалами.

Характеристики сканирующих объективов

При выборе F-Theta объективов необходимо обращать внимание на рабочую длину волны, размер пятна, а также на диаметр поля сканирования. Оптимальный подбор этих параметров позволит пользователю рассчитать рабочие величины сканирующей системы: диаметр входного пучка, отклонение сканирующего зеркала, положение зеркала и его положение.
 

рис2

Рисунок 2. Кривизна поля (%) и искажение F-Theta объектива (мм) в зависимости от угла отклонения (о)

Диаметр поля сканирования (или длина сканирования) – длина диагонали квадратной области в плоскости изображения, где пучок может быть сфокусирован объективом. Эта особенность позволяет определить отклонение (по всему фокусному расстоянию). Выходной угол сканирования – угол между выходным пучком, прошедшим сканирующий объектив, и нормалью к плоскости визуализации. Выходной угол сканирования меняется по полю, однако его значение невелико. Следует отметить, что угол выходного сканирования всегда нулевой у телецентрических объективов. Обратное фокусное расстояние – расстояние от вершины линзы (физической) до параксиальной точки фокусировки. Обратное рабочее расстояние – расстояние от корпуса объектива до параксиальной точки фокусировки.

Другой важной особенностью объектива, на которую стоит обратить внимание, является кривизна поля. F-Theta объективы оптимальны для создания плоского поля визуализации, однако на практике необходимо учитывать погрешности, вносимые компонентами. На рис. 2 в качестве примеров показаны графики для F-Theta объектива Thorlabs FTH100-1064, фокусное расстояние которого равно 100 мм, а угол отклонения составляет 28о. Из рисунка видно, что кривизна поля (мм) и искажение (%) представляют собой функцию угла сканирования. При конструировании сканирующих систем удобно размещать точку нулевой кривизны в середине диапазона сканирования, чтобы снизить погрешности при дальнейшей работе.

Сводные данные

Как было отмечено ранее, цель лазерной системы – создание подходящего размера пятна, с помощью которого достигается нужное разрешение и точное позиционирование по всему полю изображения. Для сканирующих объективов размер пятна дифракционно-ограниченного на уровне интенсивности 1/e2 рассчитывается в соответствии с соотношением:

ф1        (1)


где λ – длина волны лазерного источника, f – эффективное фокусное расстояние объектива, A – диаметр входного пучка, C – некоторая константа, вычисляемая как отношение степени освещения зрачка к усечению пучка на входе (для гауссовых пучков C = 1.83, когда входной пучок усекается по уровню 1/e2).

Фокусное расстояние также влияет на диаметр поля сканирования, который рассчитывается по формуле:

ф2        (2)


где L – диагональ квадратной области поля сканирования, θ – наибольший угол отклонения в радианах, f – эффективное фокусное расстояние объектива.

С увеличением угла отклонения, фокусное расстояние системы уменьшается. Это наиболее распространенный подход к поддержанию длины сканирования, поскольку он предоставляет возможность уменьшить размеры оптических компонентов, что в свою очередь позволяет работать с более компактной и экономически эффективной системой. Кроме того, искажения, вызванные нестабильностью двигающихся сканирующих зеркал, будут снижены, поскольку эти искажения регулируются фокусным расстоянием (меньшее фокусное расстояние снижает искажения).

Последние статьи
Пространственные фильтры
Во многих приложениях, где используются лазерные технологии, неизбежными являются пространственные искажения лазерного пучка, которые оказывают непосредственное влияние на результат эксперимента. Во избежание подобных неточностей используют системы пространственной фильтрации...
Оптические пинцеты
Феномен удержания микроскопических частиц в лазерном пучке был впервые описан в 1970 г. Артуром Эшкиным...
Направление поляризации
Любое состояние поляризации волны можно разделить на две линейно поляризованные ортогональные компоненты, ориентированные вдоль осей х и у...
Дифракционные решетки
Дифракционные решетки, пропускающие и отражательные, предназначены для пространственного деления электромагнитной волны в спектр...
Адаптивная оптика
Адаптивная оптика (АО) разработана специально для исследований в астрономии. С ее помощью можно снизить аберрации в изображении, которые формируются в результате прохождения света через земную атмосферу. Однако АО объединила множество дисциплин...
F-Theta объективы

F-Theta объективы разработаны специально для повышения точности лазерных сканирующих систем, а также систем лазерной гравировки. Данные объективы широко применяются при передаче изображений и обработке материалов...

У Вас особенный запрос?
У Вас особенный запрос?
Весьма часто наши заказчики лучше нас знают, какое оборудование им нужно. В этом случае мы берём на себя общение с производителем, доставку, и таможенную очистку, а также все вопросы гарантийного периода. Пожалуйста, заполните эту форму, и мы свяжемся с Вами, чтобы помочь решить любую Вашу задачу. Или позвоните нам по телефону +7(495)199-0-199
Форма заявки
Ваше имя: *
Ваше имя
Ваш e-mail: *
Ваш телефон: *
Ваш телефон
Наши
контакты
г. Москва, ул. Бутлерова, д. 17Б, офис 502

г. Санкт-Петербург, Коломяжский проспект, 33 корпус 2