Главная / Библиотека / Коротковолновая инфракрасная область спектра: преимущества при визуализации

Коротковолновая инфракрасная область спектра: преимущества при визуализации

Коротковолновая инфракрасная область спектра: преимущества при визуализации

К коротковолновой области инфракрасного излучения относятся длины волн из диапазона 0.9 - 1.7 мкм, но иногда коротковолновая ИК определяется и диапазоном 0.7 - 2.5 мкм. Поскольку керамические фотосенсоры распознают излучение длиной до 0.1 мкм, визуализация коротковолнового ИК спектра требует специальной оптики и электроники.

В основном в качестве фотоприемников при работе с коротковолновым ИК диапазоном пользуются приемниками, оснащенными InGaAs матрицей. Рабочая область таких фотоприемников охватывает практически всю область коротковолнового ИК спектра, от нижней границы (550 нм) до верхней (2.5 мкм). Несмотря на экономическую доступность фотоприемников линейного сканирования, более популярны фотоприемники областного сканирования – их активно применяют даже в военной промышленности благодаря конструктивной жесткости, надежности и устойчивости конфигурации к длительным перевозкам. Следует отметить, что на использование некоторых фотоприемных устройств требуется получение лицензии.

fig-1-swir
Рисунок 1. Электромагнитный спектр коротковолновой ИК области

Преимущества визуализации в коротковолновом ИК диапазоне

В отличие от средней и длинноволновой области ИК излучения, короткие ИК волны исходят не от самого объекта, а преломляются и поглощаются им, подобно видимому излучению. Таким образом, картина обретает высокий контраст. Благодаря контрасту облегчается решение задачи повышения разрешения. Природные источники коротких ИК волн – звезды и луна, видимые на ночном небе из-за подсвечивания фоновым излучением.

Для получения качественной визуализации требуется также специализированная оптика: линзы, объективы, покрытия которых также должны предназначаться для работы в коротковолновом ИК диапазоне. Использование объективов, не предназначенных для коротковолновой ИК области, спровоцирует снижение разрешения при визуализации, увеличив к тому же оптические аберрации.

Так как излучение этой области проходит через стекла, объективы, фильтры и окна, подобно видимому, принципиальных различий в производстве оптических компонентов для видимой и ИК области нет. Защитные окна и фильтры также можно встраивать в системы напрямую.

Многие задачи, где теоретически рекомендуется применять видимое излучение, на практике решаются с помощью коротких ИК волн: водяной пар, туман и подобные среды не влияют на такое излучение, в то время как источники видимого света чувствительны к условиям внешней среды.

Визуализация в видимом свете и в коротковолновом ИК диапазоне

Визуализация ИК спектров применяется в различных областях, включая проверку электронных плат, проверку солнечных элементов, экспертизу продукции, идентификацию и сортировку, наблюдение, борьбу с контрафакцией, контроль качества производственных процессов и др. Чтобы понять преимущества визуализации этого вида, рассмотрим некоторые наглядные примеры обычных повседневных продуктов, отображаемых с помощью видимого света и с помощью коротких ИК волн.

fig-2a-swir 1

Рисунок 2. а) Визуализация красного яблока в видимом спектре: яблоко кажется однородным, абсолютно красным, без каких-либо дефектов, б) ИК визуализация того же плода, но теперь отчетливо виден дефект на кожуре, качество продукта под сомнением

fig-3a-swir 2

Рисунок 3. а) Визуализация матового однотонного флакона с детской присыпкой в видимом спектре, содержимое флакона визуально не прослеживается, б) визуализация матового однотонного флакона с детской присыпкой в коротковолновом ИК спектре: содержимое флакона на этот раз распознается однозначно, можно оценить количество продукта

fig-5a-swir 5b

Рисунок 5. а) Картина «Bountiful Fruit», написанная художницей из Филадельфии Nicole Koenitzer в видимом диапазоне, б) Визуализация картины в ИК спектре: начальный набросок картины содержит изображения бананов на фоне, рамку, которых нет на конечном результате, в нижнем правом углу заметны штрихи, вероятно, художница начинала писать картину с фона и скорее всего, масло было выбрано не сразу

Коротковолновой ИК областью считается вполне определенный диапазон, для работы в котором требуется специализированная оптика с покрытиями, предназначенными для этого диапазона. Остается еще раз подчеркнуть важность тщательного подбора компонентов для визуализации в коротковолновом ИК диапазоне. При соблюдении всех требований и согласованности параметров оборудования можно избежать аберраций и снижения разрешения изображения.

Специально для визуализации ИК спектров компания Edmund Optics разработала фильтрующие и антибликовые покрытия для линз и пропускающих компонентов повышенной эффективности.

 

© Edmund Optics Inc.

Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции Edmund Optics на территории РФ

 

 

 

Последние статьи
Применение квантово-каскадных лазеров в абсорбционной спектроскопии

Спектроскопические методы, основанные на использовании лазерных источников, имеют большой потенциал для выявления и мониторинга компонентов в газовой фазе. Высокая чувствительность и селективность лазера позволяет использовать их для количественной оценки атомов и молекул в образце. Квантово-каскадные лазеры, излучающие в области среднего ИК диапазона, обеспечивают высокое разрешение и позволяют идентифицировать спектр молекул в газовых образцах и в парах воды.

Спектроскопия тонкопленочных покрытий

Тонкие пленки используются в современных высокотехнологичных полупроводниковых структурах, микроэлектронике, матричных приемниках и, конечно, в оптике. Развитие знаний о свойствах материалов позволило науке совершить настоящий прорыв. Конечное применение тонкопленочных структур может быть разнообразным, но постоянной остается необходимость точного контроля толщины каждого слоя в процессе эпитаксиального роста. Толщина пленки обычно находится в диапазоне от 1 нм до 100 мкм.

Компенсация дисперсии в микроскопии трехфотонного возбуждения

Трехфотонная микроскопия – усовершенствованный метод двухфотонной микроскопии, в котором используется не двух-, а трехфотонное возбуждение в диапазоне 1300 – 1700 нм.  Увеличение длины волны возбуждающего лазерного излучения до 1700 нм позволяет сократить рассеяние и поглощение в тканях, ограничивающих глубину поля зрения, однако методы компенсации дисперсии в многофотонной микроскопии по-прежнему остаются актуальной темой исследований в современной фотонике.

Спектрометры Avantes для лазерно-искровой эмиссионной спектроскопии

Лазерно-искровая эмиссионная спектроскопия (ЛИЭС) – один из типов атомно-эмиссионного спектрального анализа. Методом ЛИЭС изучаются спектры плазмы лазерного пробоя (лазерной искры) в анализе твердотельных образцов, жидкостей, газовых сред, взвешенной пыли и аэрозолей.

Применение CO2 лазеров с высокочастотной накачкой для обработки материалов

В последнее время во многих применения все чаще используют CO2 лазеры с высокочастотной накачкой. Данный факт обусловлен высокой производительностью, долговечностью и безопасностью таких лазеров...

У Вас особенный запрос?
У Вас особенный запрос?
Весьма часто наши заказчики лучше нас знают, какое оборудование им нужно. В этом случае мы берём на себя общение с производителем, доставку и таможенную очистку, а также все вопросы гарантийного периода. Пожалуйста, заполните эту форму, и мы свяжемся с Вами, чтобы помочь решить любую Вашу задачу. Или позвоните нам по телефону +7(495)199-0-199
Форма заявки
Ваше имя: *
Ваше имя
Ваш e-mail: *
Ваш телефон: *
Ваш телефон
Наши
контакты
г. Москва, ул. Бутлерова, д. 17Б, офис 502

г. Санкт-Петербург, Коломяжский проспект, 33 корпус 2