Главная / Библиотека / Формирование мод в лазерном резонаторе

Формирование мод в лазерном резонаторе

Формирование мод в лазерном резонаторе

Как известно, характеристики пучка лазерного излучения в основном определяются формой резонатора, в котором лазерное излучение усиливается до необходимой мощности. Профиль пучка определяется формой отражающих поверхностей (на рис. 1 представлены самые распространенные), расположенных в резонаторе зеркал из диэлектрического или монокристаллического вещества.

Работа лазерного резонатора построена на явлении полного внутреннего отражения (ПВО), когда преломленный пучок при падении на отражающую поверхность среды отсутствует.

  • Плоскопараллельный резонатор представляет собой замкнутую, чаще всего цилиндрическую полость, на противоположных торцах которой расположены плоские зеркала. Расстояние между зеркалами в таком резонаторе равно целому числу полуволн генерации.
  • В концентрическом резонаторе расположены два сферических зеркала одинакового радиуса кривизны, центры которых лежат на одной оси, а расстояние равно удвоенному радиусу.
  • В конфокальном резонаторе также содержатся два идентичных сферических зеркала, разнесенных на величину удвоенного фокусного расстояния.
  • Кольцевой резонатор – оптический резонатор, в котором свет распространяется в одном направлении. Зеркала расположены так, чтобы оптический путь пучка равнялся целому числу шестых долей длины волны генерации.

laser-resonator-modes-fig-1
Рисунок 1. Четыре распространенных типа оптических резонаторов, применяемых в лазерах: n – целое число, λ – длина волны генерации, R – радиус кривизны сферического зеркала, f – фокусное расстояние сферического зеркала

Резонатор стабилизирован, если все излучение, усиливающееся за счет ПВО (при условии, что количество отражений велико) внутри активной среды, остается внутри полости (см. рис. 2). В этом случае не происходит утечки мощности, то есть все излучение достигает единственного выхода из резонатора - частично отражающего зеркала.

Когда резонатор не стабилизирован, лучи при множественном отражении отклоняются на некоторый угол, пока не достигают выхода из резонатора. Если лазерный резонатор не стабилизирован, диаметр пучка излучаемого света будет расти по мере усиления.

Нестабилизированные резонаторы применяют в лазерах, где излучение характеризуется достаточно высокой мощностью. Утечка мощности нужна, чтобы предохранить зеркала от повреждений.

Стабилизированные резонаторы часто используются в лазерах, мощность излучения которых не превышает 2 кВт. За счет стабилизации повышается эффективность накачки и снижается погрешность направленности излучения.

laser-resonator-modes-fig-2
Рисунок 2. Ход излучения в стабилизированном (слева) и нестабилизированном резонаторе (справа): в стабилизированном отсутствуют утечки излучения, в нестабилизированном излучение по мере усиления покидает полость

Длина пути излучения в резонаторе определяет «продольные моды» резонатора или пространственное распределение электрического поля, которое вызывает стоячую волну. Моды (типы колебаний) придают пучку форму.

Колебания сохраняют профиль амплитуды и воспроизводят сами себя после завершения одного пути замкнутого контура внутри резонатора (за исключением возможной утечки некоторого количества мощности из-за потерь в резонаторе).

Для возникновения резонансной моды необходим фазовый сдвиг, равный целому числу оборотов (циклов) замкнутого контура (рис. 3).

laser-resonator-modes-fig-3
Рисунок 3. Фазовый сдвиг излучения после прохождения полного цикла в оптическом резонаторе (пропорционален числу оборотов)

Простейший тип поперечных колебаний лазерного резонатора – гауссова мода (TEM nm) – описывается с помощью аппроксимации электрической компоненты поля произведением функции Гаусса на полином Эрмита: 1

 


или:

2_19.png

 

 

где E0 – амплитуда электрической компоненты излучения, оси x, y составляют плоскость среза пучка, ось z – направление распространения излучения, w0 – радиус перетяжки пучка, w(z) – радиус пучка в данной точке распространения, Hn (x) и Hm (x) – полиномы Эрмита с неотрицательными целочисленными индексами n и m, k – волновое число (k = 2π/λ), zR – рэлеевский диапазон, R(z) – радиус кривизны волнового фронта.

Целые числа – индексы полиномов Эрмита – n и m определяют профиль пучка в направлениях осей x и y соответственно. Идеальная Гауссова мода обозначается как TEM00, в этом случае оба индекса полинома Эрмита равны нулю (см. рис. 4). Остальные значения индексов полинома Эрмита соответствуют более сложным типам колебаний. На рисунке 5 показан поперечный срез пучка излучения, соответствующего Гауссовым колебаниям нижнего порядка, а также некоторые поперечные моды высших порядков.

laser-resonator-modes-fig-4
Рисунок 4. Поперечная мода TEM00 (Гауссова мода) и соответствующий ей Гауссов пучок

laser-resonator-modes-fig-5
Рисунок 5. Поперечные срезы пучка, соответствующего резонаторной моде Эрмита-Гаусса нижнего порядка

 

© Edmund Optics Inc.

Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции Edmund Optics на территории РФ

 

 

Последние статьи
Применение квантово-каскадных лазеров в абсорбционной спектроскопии

Спектроскопические методы, основанные на использовании лазерных источников, имеют большой потенциал для выявления и мониторинга компонентов в газовой фазе. Высокая чувствительность и селективность лазера позволяет использовать их для количественной оценки атомов и молекул в образце. Квантово-каскадные лазеры, излучающие в области среднего ИК диапазона, обеспечивают высокое разрешение и позволяют идентифицировать спектр молекул в газовых образцах и в парах воды.

Спектроскопия тонкопленочных покрытий

Тонкие пленки используются в современных высокотехнологичных полупроводниковых структурах, микроэлектронике, матричных приемниках и, конечно, в оптике. Развитие знаний о свойствах материалов позволило науке совершить настоящий прорыв. Конечное применение тонкопленочных структур может быть разнообразным, но постоянной остается необходимость точного контроля толщины каждого слоя в процессе эпитаксиального роста. Толщина пленки обычно находится в диапазоне от 1 нм до 100 мкм.

Компенсация дисперсии в микроскопии трехфотонного возбуждения

Трехфотонная микроскопия – усовершенствованный метод двухфотонной микроскопии, в котором используется не двух-, а трехфотонное возбуждение в диапазоне 1300 – 1700 нм.  Увеличение длины волны возбуждающего лазерного излучения до 1700 нм позволяет сократить рассеяние и поглощение в тканях, ограничивающих глубину поля зрения, однако методы компенсации дисперсии в многофотонной микроскопии по-прежнему остаются актуальной темой исследований в современной фотонике.

Спектрометры Avantes для лазерно-искровой эмиссионной спектроскопии

Лазерно-искровая эмиссионная спектроскопия (ЛИЭС) – один из типов атомно-эмиссионного спектрального анализа. Методом ЛИЭС изучаются спектры плазмы лазерного пробоя (лазерной искры) в анализе твердотельных образцов, жидкостей, газовых сред, взвешенной пыли и аэрозолей.

Применение CO2 лазеров с высокочастотной накачкой для обработки материалов

В последнее время во многих применения все чаще используют CO2 лазеры с высокочастотной накачкой. Данный факт обусловлен высокой производительностью, долговечностью и безопасностью таких лазеров...

У Вас особенный запрос?
У Вас особенный запрос?
Весьма часто наши заказчики лучше нас знают, какое оборудование им нужно. В этом случае мы берём на себя общение с производителем, доставку и таможенную очистку, а также все вопросы гарантийного периода. Пожалуйста, заполните эту форму, и мы свяжемся с Вами, чтобы помочь решить любую Вашу задачу. Или позвоните нам по телефону +7(495)199-0-199
Форма заявки
Ваше имя: *
Ваше имя
Ваш e-mail: *
Ваш телефон: *
Ваш телефон
Наши
контакты
г. Москва, ул. Бутлерова, д. 17Б, офис 502

г. Санкт-Петербург, Коломяжский проспект, 33 корпус 2