Главная / Библиотека / Преимущества линз Френеля

Преимущества линз Френеля

Преимущества линз Френеля

Линзы Френеля состоят из набора концентрических канавок, выгравированных на поверхности пластины из прозрачного материала. Благодаря компактным размерам, небольшому весу и свойству собирать излучение линзы широко применяются в качестве увеличителей, устанавливаются в эмиттерах и системах обнаружения. Также применяются как проекционные линзы в системах подсветки и при формировании изображений.

Профиль френелевской линзы отличается от сглаженного сферического профиля обычных линз ступенчатой формой. Каждую ступень можно рассматривать как отдельную небольшую линзу, которая изгибает параллельные световые волны и фокусирует свет. Благодаря этой конфигурации, линза фокусирует свет также, как традиционные собирающие линзы, но имеет меньший вес.

fig-1-afl
Рисунок 1. Профиль френелевской линзы (главный вид и вид сбоку)

Принцип и теория линз Френеля

Задача сохранения начального направления распространения излучения в среде привела к концепции френелевской линзы еще в 18 веке. В то время оптика еще являлась отдельным направлением естественных наук.

Изучение оптических явлений, свойств различных материалов преломлять, фокусировать и рассеивать свет привело к созданию известных видов линз – собирающих и рассеивающих. Основной проблемой собирающих линз являлась их большая масса и высокое поглощение материала, и тогда французский физик А. Френель предложил конфигурацию линзы, обладавшую небольшой массой и свойством собирать излучение. Линза, предложенная Френелем, предназначалась для маяка.

Линза была создана из цельного куска стекла, на который наносились штрихи – концентрические окружности через малые промежутки. По форме линза напоминала уже существующие тогда собирающие сферические линзы, за исключением малой толщины и особого профиля (см. рис. 2).

Дальнейший, в том числе современный, анализ параметров линзы Френеля привел к выводу, что повышение частоты наносимых штрихов позволяет добиться высокого качества изображения, снижение – лучшей фокусировки. Нужно отметить, что на сегодняшний день изображения высокого качества получают чаще с помощью асферических линз или дублетов.

fig-2-afl

Рисунок 2. Боковой профиль традиционной линзы (слева), линзы Френеля (справа)

Изготовление линз Френеля

Конечно, первые линзы Френеля была сделаны вручную – полировка стекла и гравировка штрихов занимала продолжительное время. Начальный этап изготовления линзы, плавка стекла в формах, несколько веков назад была опасна и являлась длительным процессом. К счастью, с развитием технологии пластмасс и литья под давлением в 20 веке использование линз Френеля в промышленности стало практически и коммерчески целесообразным.

Сейчас линзы Френеля изготавливают из множества различных материалов – от акрила до поликарбоната и винила, в зависимости от длины волны излучения, на которой предполагается работа линзы. Чаще всего в производстве используют акрил – такие линзы имеют высокую пропускательную способность в видимом и УФ диапазонах. Для жестких внешних условий больше подойдет линза из поликарбоната – этот материал известен своей устойчивостью к температурным перепадам.

Примеры приложений

Стоит отметить, что к идее френелевской линзы шли многие ученые, но популяризовать ее удалось лишь А. Френелю. Он был первым, предложившим практическое применение – установку линзы в объектив маяка. С тех пор были открыто и другое свойство френелевской линзы – увеличение.

Получение параллельного пучка

С помощью линзы Френеля и точечного источника, размещенного на фокусном расстоянии, легко формируется параллельный пучок излучения. В случае, когда требуется добиться сходимости параллельного пучка в точку, линза (для большей эффективности) должна располагаться несколько ближе к источнику (см. рис. 3 - 4).

fig-3-afl
Рисунок 3. Получение параллельного пучка с помощью линзы Френеля

Фокусировка излучения

Основное практическое применение линз Френеля – фокусировка солнечного излучения, которое в бесконечном приближении может считаться практически параллельным. Так, линзы Френеля стали основным компонентом солнечных батарей, которые используются для нагрева целых домов или бассейнов. Очевидно, что площадь поверхности этих линз определяет количество собранного излучения.

fig-4-afl
 

Рисунок 4. Фокусировка излучения от точечного источника, расположенного на бесконечности

Увеличительная способность

Другое популярное применение линз Френеля – увеличение (например, в микроскопах и проекционные объективы). Ограничение на практике накладывает высокий уровень паразитной засветки, присущей всем линзам Френеля, потому эти линзы для эффективного увеличения используются нечасто.

Тем не менее, линзы Френеля по-прежнему остаются относительно недорогим и физически невесомым приспособлением для различных систем солнечного нагрева. Концепция не отличается новизной, однако с развитием технологий изготовления и открытием новых материалов, линзы Френеля точно не утратят своей популярности.

 

© Edmund Optics Inc.

Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции Edmund Optics на территории РФ

 

Последние статьи
Терагерцовые спектрометры и спектральные комплексы Rainbow Photonics

TeraSys - ULTRA для терагерцовой спектроскопии и имиджинга.  TeraSys12 для генерации широкополосного терагерцового излучения (до 12 ТГц) путем электрооптического выпрямления импульсов. TeraSys - AiO для генерации импульсов шириной 20 ТГц. TeraIMAGE для передачи и терагерцового имиджинга...

Avantes для спектроскопии в ИК, УФ и видимом диапазоне

Постоянная линейка AvaSpec - это полноценные измерительные системы нового поколения. Каждый спектрометр может использоваться как спектрофотометр, спектрофлуориметр, фотоколориметр, радиометр, фотометр, денситометр, рефлектометр, флуориметр, нефелометр, люминометр, спектрорадиометр и оксиметр. В обзоре - самые популярные и функциональные модели Avantes.

CO2 и эксимерные лазеры

В статье описаны преимущества и недостатки CO2 и эксимерного лазеров, дана краткая сравнительная характеристика.

Лазерная обработка излучением с длиной волны 2 мкм

Лазерные источники стали неотъемлемой частью обработки материалов и поверхностей в промышленных приложениях. Мощное, когерентное и узкополосное излучение лазерного источника позволяет достичь невероятной точности при обработке любых поверхностей – от прочнейших металлов до тонкого пластика...

Оптика: теоретические основы

Оптика – это раздел физики, в котором изучается природа световой волны. Среди множества задач, решением которых занимается современная наука, есть как хорошо известные, так и редко упоминаемые темы: от привычных законов преломления и отражения света до анализа взаимодействия между несколькими отражающими покрытиями...

Преобразование пучка для голографических приложений

Голография – одна из иллюстраций явления интерферометрии. Как интерферометрические, как и голографические методы имеют собственную специфику, и однородность пучков – важнейшее условие получения качественной визуализации...

У Вас особенный запрос?
У Вас особенный запрос?
Весьма часто наши заказчики лучше нас знают, какое оборудование им нужно. В этом случае мы берём на себя общение с производителем, доставку и таможенную очистку, а также все вопросы гарантийного периода. Пожалуйста, заполните эту форму, и мы свяжемся с Вами, чтобы помочь решить любую Вашу задачу. Или позвоните нам по телефону +7(495)199-0-199
Форма заявки
Ваше имя: *
Ваше имя
Ваш e-mail: *
Ваш телефон: *
Ваш телефон
Наши
контакты
г. Москва, ул. Бутлерова, д. 17Б, офис 502

г. Санкт-Петербург, Коломяжский проспект, 33 корпус 2