Главная / Библиотека / Управление фазовым электрооптическим модулятором с помощью генератора сигналов с выходным усилителем

Управление фазовым электрооптическим модулятором с помощью генератора сигналов с выходным усилителем

Управление фазовым электрооптическим модулятором с помощью генератора сигналов с выходным усилителем

Волоконные электрооптические модуляторы используются для регулирования лазерного излучения. В цепи фазовые модуляторы в основном работают на частоте 1 ГГц и выше, отчего создается значительная нагрузка на ВЧ-источник. В этой статье приведены фрагменты исследования свойств цепи, в которой фазовый электрооптический волоконный модулятор подключен к генератору ВЧ-сигналов. Для анализа характеристик в лабораторной работе использованы приборы для регистрации спектра модулированного оптического сигнала.

По результатам опыта выявлено, что генератор высокочастотных сигналов может использоваться для управления фазовым электрооптическим модулятором, подход и фрагменты данного исследования приведены далее.

Экспериментальная установка и схема опыта

Для управления волоконным фазовым модулятором требуется заранее определить мощность, которую должен развить ВЧ-источник.

EOM_FiberCoupled_Setup_A1-780

Рисунок 1. Экспериментальная установка, в которой волоконный электрооптический фазовый модулятор подключен к генератору сигналов

Перед расчетом мощности следует оценить напряжение возбуждения, необходимого для достижения желаемой глубины модуляции. Критерии выбора глубины модуляции, подбор соотношения глубины модуляции и напряжения возбуждения, а также расчеты мощности ВЧ-источника приведены в файле Lab Facts.

В ходе исследований было выявлено, что мощности одного функционального генератора будет недостаточно для решения всех поставленных задач, потому решено было разместить усилитель с низким уровнем шума между источником и модулятором. Также в цепь включили фильтр нижних частот, чтобы устранить искажение сигнала, поступавшего от генератора. Таким образом осуществлялось управление фазовым модулятором, на который подавалось синусоидальное напряжение, и в результате происходила синусоидальная фазовая модуляция лазерного излучения 1550 нм.

Сигнал на осциллоскоп поступал из сканирующего интерферометра Фабри-Перо. Интерферометр разместили после фазового модулятора, чтобы регистрировать оптический сигнал. Этот тип интерферометра был выбран для того чтобы наблюдать мельчайшие особенности модулированных оптических спектров: при длине волны 1550 нм разность частот 1 ГГц эквивалентна разности длин волн в 0,8 мкм. Измеренные спектры представлялись в виде функций времени сканирования. В документе Lab Facts описан прямой метод преобразования из единиц времени сканирования Фабри-Перо в единицы относительной оптической частоты. В этом опыте принимается Δf = (1,17 ГГц / мс) Δt.

Результаты эксперимента

В теории к работе указано, что спектры модулированных оптических сигналов должны представлять собой наборы симметричных боковых полос, расположенных по разные стороны от несущей частоты лазера fo. Боковые полосы смещены от этой частоты на целые величины, кратные частоте модуляции fm (fo ± N fm где N = 1, 2, ...). Относительная высота боковых полос зависит от глубины модуляции, которая, в свою очередь, зависит от пикового значения управляющего напряжения. Учитывая глубину модуляции, можно рассчитать относительные амплитуды пика несущей лазера и вычислить значения боковых полос модуляции. Таким образом происходит распределение мощности по различным пикам, что в конечном счете позволяет решать различные задачи. Опыт доказал справедливость теоретических предположений.

22222

Рисунок 2. Спектр фазовомодулированного сигнала при напряжении Vpp = 2.85 В
Несущая частота - fo; частота модуляции  fm = 1 ГГц. По оси Х измеряется время сканирования интерферометром Фабри-Перо, которое можно перевести в единицы относительной оптической частоты

 

3333333

Рисунок 3. Кривые, соответствующие относительным мощностям пика несущей и нескольких боковых полос, представленных в виде функции глубины модуляции. Глубина модуляции в 0.44 |ф0|/pi обозначена черной стрелкой и относится к рисунку 2, глубина модуляции в 0.56 |ф0|/pi обозначена серой стрелкой и соответствует рисунку 4

 

4444444444444444444

Рисунок 4. Спектр фазовомодулированного сигнала при напряжении Vpp = 3.63 В
Несущая частота - fo; частота модуляции  fm = 1 ГГц. По оси Х измеряется время сканирования интерферометром Фабри-Перо, которое можно перевести в единицы относительной оптической частоты

Спектральные кривые на рисунках 2 и 4 представляют собой модулированные спектры, которые и изучались в работе. Теоретические кривые на рисунке 3 – это функция глубины модуляции, по которым вычислены ожидаемые относительные мощности пика несущей частоты лазера (сплошная кривая красного цвета), боковые полосы первого порядка (пунктирные кривые синего цвета), второго порядка (пунктирные кривые зеленого цвета) и третьего порядка (пунктирные кривые фиолетового цвета). Черная стрелка указывает на глубину модуляции, относящуюся к спектру на рисунке 2, а серая стрелка указывает на глубину модуляции, соответствующей спектру на рисунке 4.

Из результатов работы видно, что частоты модуляции согласованы и спектральные распределения мощности в оптических спектрах соответствуют управляющему пиковому напряжению источника ВЧ-сигналов. Итак, совпадение эмпирических и экспериментальных данных доказывает справедливость предположения о том, что управление фазовым модулятором можно осуществлять с помощью генератора ВЧ-сигналов.

 

© Thorlabs Inc.

Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции Thorlabs на территории РФ

 

 

Последние статьи
Применение квантово-каскадных лазеров в абсорбционной спектроскопии

Спектроскопические методы, основанные на использовании лазерных источников, имеют большой потенциал для выявления и мониторинга компонентов в газовой фазе. Высокая чувствительность и селективность лазера позволяет использовать их для количественной оценки атомов и молекул в образце. Квантово-каскадные лазеры, излучающие в области среднего ИК диапазона, обеспечивают высокое разрешение и позволяют идентифицировать спектр молекул в газовых образцах и в парах воды.

Спектроскопия тонкопленочных покрытий

Тонкие пленки используются в современных высокотехнологичных полупроводниковых структурах, микроэлектронике, матричных приемниках и, конечно, в оптике. Развитие знаний о свойствах материалов позволило науке совершить настоящий прорыв. Конечное применение тонкопленочных структур может быть разнообразным, но постоянной остается необходимость точного контроля толщины каждого слоя в процессе эпитаксиального роста. Толщина пленки обычно находится в диапазоне от 1 нм до 100 мкм.

Компенсация дисперсии в микроскопии трехфотонного возбуждения

Трехфотонная микроскопия – усовершенствованный метод двухфотонной микроскопии, в котором используется не двух-, а трехфотонное возбуждение в диапазоне 1300 – 1700 нм.  Увеличение длины волны возбуждающего лазерного излучения до 1700 нм позволяет сократить рассеяние и поглощение в тканях, ограничивающих глубину поля зрения, однако методы компенсации дисперсии в многофотонной микроскопии по-прежнему остаются актуальной темой исследований в современной фотонике.

Спектрометры Avantes для лазерно-искровой эмиссионной спектроскопии

Лазерно-искровая эмиссионная спектроскопия (ЛИЭС) – один из типов атомно-эмиссионного спектрального анализа. Методом ЛИЭС изучаются спектры плазмы лазерного пробоя (лазерной искры) в анализе твердотельных образцов, жидкостей, газовых сред, взвешенной пыли и аэрозолей.

Применение CO2 лазеров с высокочастотной накачкой для обработки материалов

В последнее время во многих применения все чаще используют CO2 лазеры с высокочастотной накачкой. Данный факт обусловлен высокой производительностью, долговечностью и безопасностью таких лазеров...

У Вас особенный запрос?
У Вас особенный запрос?
Весьма часто наши заказчики лучше нас знают, какое оборудование им нужно. В этом случае мы берём на себя общение с производителем, доставку и таможенную очистку, а также все вопросы гарантийного периода. Пожалуйста, заполните эту форму, и мы свяжемся с Вами, чтобы помочь решить любую Вашу задачу. Или позвоните нам по телефону +7(495)199-0-199
Форма заявки
Ваше имя: *
Ваше имя
Ваш e-mail: *
Ваш телефон: *
Ваш телефон
Наши
контакты
г. Москва, ул. Бутлерова, д. 17Б, офис 502

г. Санкт-Петербург, Коломяжский проспект, 33 корпус 2